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Executive Summary 

Modern transportation networks are subject to malicious spoofing attacks, i.e. injection of falsified, 
misleading data. In this project, we study the reliability/security risk of feedback-controlled queuing 
systems and propose methods for strategic defense. We consider a system of parallel servers and 
queues with dynamic routing subject to reliability and/or security failures. In the reliability setting, we 
study the impact of faulty routing (i.e. an incoming job not being allocated to the shortest queue) on the 
queuing cost. We show that the system is stable if and only if the probability of wrongly allocating jobs 
to a server is less than the ratio between the server's service rate and the total arrival rate. We derive 
sufficient condition for stability under state-dependent defending strategies, characterize structure of 
the optimal strategy, and develop a dynamic programming algorithm to compute the strategy. For the 
security setting, we formulate an attacker-defender game that characterizes possible security failure 
scenarios. The attacker selects the probability of modifying a job's allocation, and the defender selects 
the probability of defending a job's allocation. Both attacking and defending induce technological costs. 
For state-independent strategies, we show that the regimes are qualitatively different for low and high 
demands. For state-dependent strategies, we characterize the equilibria structure and propose an 
algorithm that numerically computes the security risk. We also present computational examples to 
illustrate the proposed models and methods. In addition, we study the behavior of transportation 
networks under strategic data spoofing and propose diagnosis and secure routing strategies. We 
consider a multi-class Jackson network with Bernoulli routing. The system operator (SO) decides the 
routing probabilities based on the traffic demand and service rates. An adversary is able to create non-
existing, phantom traffic demand of any class. Phantom demand does not affect service of real traffic 
but can mislead the SO's routing decisions. We use a non-zero-sum sequential game to model the 
interaction between the players. We first characterize the attacker's decision and study network 
resiliency (in terms of throughput and queuing cost) in the absence of diagnosis and secure routing. 
Then, we design a diagnosis scheme to fully or partially recover the spoofed data. The diagnosis result 
further leads to a routing scheme optimizing the worst-case scenario. We also present a running 
example to illustrate the main concepts and results. 
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Section 1: Introduction 

Modern transportation networks are increasingly connected and autonomous, thanks to the 
introduction of real-time sensing and autonomous decision-making capabilities. However, the cyber 
components enabling connectivity and autonomy are subject to persistent security threats. A major 
threat is spoofing attacks via injection of falsified information. For transportation networks, a typical 
form of spoofing attack is to inject non-existent (i.e. ``phantom'') traffic into routing/navigation tools, 
and real incidents have been reported. Such attacks can create fake congestion, mislead routing 
decisions, and lead to real congestion or even system breakdown (traffic jam). Although such security 
risk has recently become well-known in the cyber-physical systems (CPS) community, the transportation 
community still lacks tools to systematically evaluate and respond to the risk. 

Dynamic routing is a classical control strategy applicable to a variety of engineering systems, including 
transportation [1], production lines [2], and communications [3]. The idea of dynamic routing is that a 
job (e.g. a vehicle, a part, or a data packet) is allocated to a server with a shorter queue, which has been 
proved to be optimal if the system operator has perfect observation of the system states and perfect 
implementation of the policy [4]. Such sensing and actuating typically rely on cyber components 
connected via wired or wireless communications. Although connectivity can significantly improve 
throughput and reduce delay, it is vulnerable to random component malfunctions and malicious remote 
attacks and thus brings reliability and security risks. In intelligent transportation systems, researchers 
have shown that traffic sensors and traffic lights can be easily intruded and manipulated [5, 6]. Similar 
security risks also exist in production lines [7] and communication networks [8]. However, such risk has 
not been well modeled and studied in conjunction with the dynamics of the engineering systems, which 
is typically modeled as queuing processes. 

In this project, we develop novel models and methods to evaluate the reliability/security risk of dynamic 
routing and to design an efficient deployment of protecting resources. We consider a parallel queuing 
system with a routing mechanism that is subject to faults due to hardware malfunctions or malicious 
attacks. The proposed approach quantifies the efficiency loss (in terms of queuing delay) due to 
reliability and/or security failures that occur randomly. We study both open-loop and closed-loop (i.e. 
queuing state-dependent) defending strategies that restrict the reliability/security risk while maintaining 
an acceptable budget. We characterize the structures of the defending strategies and develop 
algorithms that efficiently compute the strategies. We also demonstrate our approach via a series of 
computational examples. The proposed methods are relevant to resilient design of intelligent 
transportation systems, production lines, and communications. 

We consider a homogeneous Poisson arrival process of jobs and n parallel exponential servers with 
identical service rates. If both sensing and actuating are normal, the system operator allocates incoming 
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jobs to the shortest queue; if the queues are equal, the job is routed randomly to each server with equal 
probabilities. We focus on two scenarios of failures: 

1. Reliability: The routing is faulty with a constant probability. When a fault occurs, a job is randomly 
allocated to one of the n servers; otherwise the job is allocated to the shortest queue. A defender is able 
to deploy security resource to control the probability of faults. Deploying security resource induces a 
technological cost on the defender, and the cost is identical for all jobs. The defender aims to balance 
the efficiency loss due to faults and the technological cost to deploy security resource. 

2. Security: A malicious attacker is able to modify the routing instruction with a randomly generated 
one. The defender is able to defend individual jobs to ensure correct routing. Both attack and defense 
induce technological costs. The attacker’s (resp. defender’s) decision is the probability of attacking (resp. 
defending) the routing of each customer. The attacker (resp. defender) is interested in balancing the 
long-time-average network- wide queuing cost minus the attacking cost (resp. plus the defending cost). 
We assume that both players use Markovian strategies; i.e. the probabilities of attacking and defending 
only depend on the state of the queuing system. 

Numerous results have been developed for parallel queuing systems without sensing/ actuating faults 
[9, 4, 10, 11, 12, 13, 14]. Although some of these results provide hints for our problem, they do not 
directly apply to the setting with failures. Parallel queuing systems have been studied with delayed [15], 
erroneous [16], or decentralized information [17], which provides insights for our purpose. Previous 
work typically relies on characterization or approximation of the steady-state distribution of the queuing 
state; however, this analysis approach is hard to be synthesized with reliability failure and security game 
models. In addition, it is hard to study the steady-state distribution of queuing systems with state- 
dependent transition rates. 

To address this challenge, we use a Lyapunov function-based approach to study the stability (i.e. 
boundedness) of the queuing system and to obtain upper bounds for the mean number of jobs in the 
system. This approach has been applied to queuing systems in settings different from that in this paper 
[18, 19, 20]. Importantly, we use this approach to study the queuing dynamics under state-dependent 
defending strategies. Using an upper bound for queuing cost derived from the Foster-Lyapunov criterion 
[21], we formulate a design problem for security resource deployment. We also formulate a dynamic 
programming (DP) to compute the optimal defending strategy. Using a numerical example, we show 
that the DP algorithm gives a solution that is consistent with our theoretical conclusion. 

In addition, we study the resiliency of a class of transportation networks with respect to spoofing 
attacks. We consider a single-origin-single-destination (SOSD) open Jackson network with open-loop 
Bernoulli routing. Spoofing attacks can mislead the system operator's (SO's) routing decisions. We use a 
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queuing-theoretic approach to quantify the travel cost and a game-theoretic approach to characterize 
the interaction between the attacker and the SO.  

There is extensive work on security of generic CPS, but very limited results are available for 
transportation systems. For generic CPS, a typical class of methods are game-theoretic approaches; 
these approaches usually do not involve physical dynamics of CPS. There are recent results on secure 
control for linear systems, but transportation systems are mostly nonlinear. Another class of methods is 
discrete-event systems (DES), which are more suitable for microscopic logical analysis rather than 
macroscopic quantitative/monetized analysis. The major challenge to bridge the gap between generic 
CPS security theory and transportation applications is the mapping from generic formulation to concrete 
transportation models and metrics. Among the limited transportation-specific results, Reilly et al. 
studied the potential for attackers to create specific congestion patterns via coordinated manipulation 
of ramp controllers. Wu et al. considered the impact of malicious electronic toll deception on system 
efficiency. Laszka et al. considered a scenario where an attacker can directly override traffic signaling 
and proposed heuristics for computing detection and mitigation strategies. However, the above results 
do not consider ``phantom traffic'' attacks and do not quantify key performance metrics. There also 
exists work on non-strategic network failures, which provides insights for the strategic setting in this 
paper. 

We consider a Stackelberg leader-follower game over an SOSD Jackson network. The SO determines the 
Bernoulli routing probabilities according to the observed traffic demand at the origin and the service 
rate of each node. This decision is open-loop and cannot be adjusted in response to real-time traffic 
state. The attacker can inject a certain amount of phantom traffic at the origin and can arbitrarily route 
the phantom traffic over the network. Phantom traffic does not consume service capabilities of servers. 
The SO cannot differentiate the actual and phantom demand at the origin, so the SO will make decisions 
based on the sum thereof. In the security game, the SO moves first with the objective to minimize the 
worst-case queuing cost. The attacker moves second with the objective to maximize the queuing cost. 
We use a Wheatstone bridge network to illustrate the major insights about the secure routing problem. 
In addition, we characterize the equilibria of the attacker-defender game. Game theory is a powerful 
tool for security risks analysis that has been extensively used in various engineering systems [22, 23, 24]. 
Game theoretic approaches have been applied to studying security of routing in transportation [25, 26] 
and communications [27, 28]. However, to the best of our knowledge, the security risk of feedback 
routing policies has not been well studied from a perspective combining game theory and queuing 
theory, which is essential for capturing the interaction between the queuing dynamics and the players’ 
decisions. For open-loop attacking and defending strategies, we quantitatively characterize the security 
risk (in terms of attack-induced queuing delay and technological cost for defense) in various scenarios. 
We show that the game has multiple regimes for equilibria dependent on the technological costs of 
attacking and of defending as well as the demand. A key finding is that the attacker would either attack 
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no jobs or attack all jobs. When the attacking cost is high, the attacker may have no incentive to attack 
any jobs; consequently, the defender does not need to defend any jobs. When the attacking cost is low, 
the attacker will attack every job; in this case, the defender’s behavior will depend on the defending 
cost. The regimes also depend on the arrival rate of jobs: for higher arrival rates, the attacker has a 
higher incentive to attack, and the defender has a higher incentive to defend. For closed-loop strategies, 
we again use the Lyapunov function-based approach to derive an upper bound for the queuing cost 
resulting from the attacker-defender game. In particular, we show that the defender has a higher 
incentive to defend if the difference between the longest and the shortest queues is larger. We also 
develop an algorithm that computes the equilibria of the game and quantifies the security risk. 

Section 2: Model setup 

Subsection 2.1 Queuing model 

Consider a parallel queuing system. Jobs arrive according to a Poisson process of rate 𝜆𝜆. Each server serves 
jobs at an exponential rate of 𝜇𝜇. We use 𝑋𝑋(𝑡𝑡) = [𝑋𝑋1(𝑡𝑡),𝑋𝑋2(𝑡𝑡), … ,𝑋𝑋𝐾𝐾(𝑡𝑡)]T to denote the number of jobs, 
either waiting or being served, in the 𝑛𝑛 servers, respectively.  

Without any failures, any incoming job is allocated to the shortest queue. If there are multiple shortest 
queues, then the job is randomly allocated to one of them with equal probabilities. 

Subsection 2.2 Reliability failures 

Suppose that when a job arrives at the system, its allocation is correct with probability (1 − 𝑎𝑎) and is 
faulty with probability 𝑎𝑎 ∈ [0,1]. If the allocation is correct, the job joins the shortest queue. If the 
allocation is faulty, then the job joins a random queue; the probability of joining the ith queue is 1/𝑛𝑛. Fig. 
1 illustrates the routing in the presence of reliability failures. 

 

Figure 1: Two-queue System with Shorter-queue Routing under Reliability Failures. 
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The system operator (defender) can deploy additional resources to ensure correct routing. The probability 
of defending is a state-dependent Markovian policy  𝛽𝛽:ℤ≥0𝑛𝑛 → [0,1], which is selected by the defender. 
Defending a job induces a one-time cost of 𝑐𝑐𝑏𝑏 on the defender. 

The objective of the defender is to balance the queuing cost and the defending cost. We formulate this 
problem as an infinite-horizon continuous-time Markov decision process. 

The defender aims to minimize the expected cumulative discounted cost 𝐽𝐽(𝑥𝑥): 

𝐽𝐽∗(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚𝛽𝛽 𝐽𝐽(𝑥𝑥,𝛽𝛽) = 𝑚𝑚𝑚𝑚𝑚𝑚𝛽𝛽 𝔼𝔼 �� 𝑒𝑒−𝜌𝜌𝜌𝜌𝐶𝐶�𝑋𝑋(𝑡𝑡)�𝑑𝑑𝑑𝑑|𝑋𝑋(0) = 𝑥𝑥
∞

0
�, 

where 𝜌𝜌 is the discounted factor and 𝐶𝐶 is the immediate cost defined as: 

𝐶𝐶(𝜉𝜉) = |𝜉𝜉| + 𝑐𝑐𝑏𝑏𝛽𝛽(𝜉𝜉). 

Subsection 2.3 Security failures 

Suppose that a malicious attacker can compromise the operator’s dynamic routing. When a job arrives 
and is being allocated, the attacker can modify the instruction sent by the operator so that the job is 
mistakenly allocated to a non-shortest queue. If the attacker attacks, she needs to select the queue that 
the job joins. Since we only consider Markovian strategies, it is apparent that the attacker’s best action is 
to allocate the job to the longest queue. Attacks have no impact when the queues are equal. Each job is 
attacked with a state-dependent probability 𝛼𝛼, where 𝛼𝛼(𝑥𝑥) is selected by the attacker. Fig. 2 illustrates 
the routing in the presence of reliability failures. 

 

Figure 2: Two-queue System with Shorter-queue Routing under Security Failures. 

The defender model is essentially the same as that in the reliability setting. The only difference is that in 
the security setting, the defender knows that she is playing a security game with the strategic attacker. 
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We formulate the interaction between the attacker and the defender as an infinite-horizon stochastic 
game with Markovian strategies. 

The attacker aims to maximize the expected cumulative discounted reward 𝑉𝑉(𝑥𝑥,𝛼𝛼,𝛽𝛽)  given the 
defender’s Markovian strategy 𝛽𝛽: 

𝑉𝑉𝐴𝐴∗(𝑥𝑥,𝛽𝛽) = 𝑚𝑚𝑚𝑚𝑚𝑚𝛼𝛼𝑉𝑉(𝑥𝑥,𝛼𝛼,𝛽𝛽) = 𝑚𝑚𝑚𝑚𝑚𝑚𝛼𝛼  𝔼𝔼�� 𝑒𝑒−𝜌𝜌𝜌𝜌𝑅𝑅�𝑋𝑋(𝑡𝑡)�𝑑𝑑𝑑𝑑|𝑋𝑋(0) = 𝑥𝑥
∞

0
�, 

where 𝑅𝑅:ℤ≥0𝑛𝑛 → ℝ is the immediate reward defined as: 

𝑅𝑅(𝜉𝜉) = |𝜉𝜉| + 𝑐𝑐𝑏𝑏𝛽𝛽(𝜉𝜉) − 𝑐𝑐𝑎𝑎𝛼𝛼(𝜉𝜉). 

Similarly, the defender aims to minimize the expected cumulative discounted loss given the attacker’s 
Markovian strategy α: 

𝑉𝑉𝐵𝐵∗(𝑥𝑥,𝛼𝛼) = 𝑚𝑚𝑖𝑖𝑖𝑖𝛽𝛽𝑉𝑉(𝑥𝑥,𝛼𝛼,𝛽𝛽). 

Section 3: Robust routing 

Subsection 3.1 Stability criteria 

Proposition 1. The unprotected 𝑛𝑛-queue system is stable if and only if 

𝜆𝜆 < 𝑛𝑛𝑛𝑛.  (1)  

Furthermore, when the system is stable, the number of jobs is upper bounded by 

𝑋𝑋� ≔ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡→←�𝔼𝔼�𝑓𝑓�𝑋𝑋(𝑠𝑠)�� ≤
𝑡𝑡

𝑠𝑠=0

𝜆𝜆 + 𝑛𝑛𝑛𝑛
2(𝜇𝜇 − 𝜆𝜆/𝑛𝑛). 

Theorem 1. Consider the 𝑛𝑛-queue system subject to faults. The routing of a job is faulty with probability 
𝑎𝑎. The system operator protects each job with a state-dependent probability 𝛽𝛽. Then 𝑛𝑛-queue system is 
stable if there exists a compact set 𝜒𝜒0 = [0,𝜃𝜃]𝑛𝑛 such that for any 𝑥𝑥 ∈ 𝜒𝜒0𝑐𝑐, when 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚/|𝑥𝑥| < 1/𝑛𝑛, 

𝛽𝛽(𝑥𝑥) > 1 −
𝜇𝜇 − 𝜆𝜆𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚/|𝑥𝑥|

𝑎𝑎𝑎𝑎 �1
𝑛𝑛 −

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
|𝑥𝑥| �

, (1) 

where 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = min
𝑖𝑖
𝑥𝑥𝑖𝑖  and |𝑥𝑥| = ∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 . Furthermore, any equilibrium (𝛼𝛼∗,𝛽𝛽∗) must satisfy the above, 

and the number of jobs is upper bounded by 
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𝑋𝑋� ≤
𝜆𝜆 + 𝑛𝑛𝑛𝑛

2𝑐𝑐
, (2) 

where 𝑐𝑐 = min
𝑥𝑥
𝜇𝜇 − 𝜆𝜆𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚/|𝑥𝑥|− 𝑎𝑎�1 − 𝛽𝛽(𝑥𝑥)�𝜆𝜆(1/𝑛𝑛 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚/|𝑥𝑥|). 

Subsection 3.2 Optimal dynamic routing 

The Hamiltonian-Jacobi-Bellman equation (derived from Kolmogorov equation) of the dynamic 
programming can be written as [29] 

0 = 𝑚𝑚𝑚𝑚𝑚𝑚𝛽𝛽|𝑥𝑥| + 𝑐𝑐𝑏𝑏𝛽𝛽(𝑥𝑥) − 𝜌𝜌𝐽𝐽∗(𝑥𝑥) + ℒ𝛽𝛽𝐽𝐽∗(𝑥𝑥), 

where ℒ𝛽𝛽 is the infinitesimal generator under control policy 𝛽𝛽.  That is, 

(𝜌𝜌 + 𝜆𝜆 + 𝑛𝑛𝑛𝑛)𝐽𝐽∗(𝑥𝑥)

=  𝑚𝑚𝑚𝑚𝑚𝑚𝛽𝛽  �|𝑥𝑥| + 𝑐𝑐𝑏𝑏𝛽𝛽(𝑥𝑥) + 𝜇𝜇�𝐽𝐽∗((𝑥𝑥 − 𝑒𝑒𝑖𝑖)+)
𝑖𝑖

+ 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 𝐽𝐽∗�𝑥𝑥 + 𝑒𝑒𝑗𝑗�

+ �1 − 𝛽𝛽(𝑥𝑥)�
𝑎𝑎
𝑛𝑛
𝜆𝜆�� 𝐽𝐽∗(𝑥𝑥 + 𝑒𝑒𝑖𝑖) −𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 𝐽𝐽∗�𝑥𝑥 + 𝑒𝑒𝑗𝑗��

𝑖𝑖

� 

Here +(−)𝑒𝑒𝑖𝑖 means adding (subtracting) 1 from 𝑖𝑖-th element. 

Definition 1. The optimal defending policy is defined as 

𝛽𝛽∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝛽𝛽 𝐽𝐽(𝑥𝑥,𝛽𝛽). 

Remark 1. When 𝑥𝑥1  =  𝑥𝑥2  = ··· =  𝑥𝑥𝑛𝑛, 𝛽𝛽∗(𝑥𝑥) = 0. 

Therefore, the defending policy is deterministic at each state 𝑥𝑥, either defend (𝑏𝑏 = 1) or not defend 
(𝑏𝑏 = 0). Now the HJB equation turns into 

(𝜌𝜌 + 𝜆𝜆 + 𝑛𝑛𝑛𝑛)𝐽𝐽∗(𝑥𝑥)

=  𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏∈0,1  �|𝑥𝑥| + 𝑐𝑐𝑏𝑏𝑏𝑏 + 𝜇𝜇�𝐽𝐽∗((𝑥𝑥 − 𝑒𝑒𝑖𝑖)+)
𝑖𝑖

+ 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 𝐽𝐽∗�𝑥𝑥 + 𝑒𝑒𝑗𝑗�

+ (1 − 𝑏𝑏)
𝑎𝑎
𝑛𝑛
𝜆𝜆�� 𝐽𝐽∗(𝑥𝑥 + 𝑒𝑒𝑖𝑖) −𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 𝐽𝐽∗�𝑥𝑥 + 𝑒𝑒𝑗𝑗��

𝑖𝑖

�                        (3) 

Based on the uniformization trick, we can assume 𝜌𝜌 + 𝜆𝜆 + 𝑛𝑛𝑛𝑛 = 1 without loss of generality. 

The main theorem of this section is given below. 
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Theorem 2. The optimal defending policy 𝛽𝛽∗  is a threshold policy characterized by 𝑛𝑛 non-intersecting 
symmetric monotonically non-decreasing threshold functions (see Figure 3). 

 

Figure 3: Two-queue System with Shorter-queue Routing under Security Failures. 

Based on Theorem 2, the key findings are: the defender is more likely to defend when (1) the queue 
lengths are “unbalanced” (2) queues are close to empty.  

Subsection 3.3 Proof of stability criteria 

Consider the quadratic Lyapunov function  

𝑊𝑊(𝑥𝑥) =
1
2
�𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

. 

For the unprotected case, by applying the infinitesimal generator, we have 

ℒ𝑊𝑊(𝑥𝑥) = 𝑎𝑎𝑎𝑎
1
2
�

1
𝑛𝑛 �

(𝑥𝑥𝑖𝑖 + 1)2 − 𝑥𝑥𝑖𝑖2�
𝑛𝑛

𝑖𝑖=1

+ (1 − 𝑎𝑎)𝜆𝜆
1
2 �

(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 1)2 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2 �

+ 𝜇𝜇
1
2
�

1
𝑛𝑛
𝕀𝕀𝑥𝑥𝑖𝑖>0�(𝑥𝑥𝑖𝑖 − 1)2 − 𝑥𝑥𝑖𝑖2�

𝑛𝑛

𝑖𝑖=1

. 

We can relax it to  

ℒ𝑊𝑊(𝑥𝑥) ≤ �𝜆𝜆
𝑛𝑛
− 𝜇𝜇� |𝑥𝑥| + 1

2
(𝜆𝜆 + 𝑛𝑛𝑛𝑛). 

Hence, by (1) there exists a constant 𝑐𝑐 = 𝜇𝜇 − 𝜆𝜆/𝑛𝑛 > 0 and 𝑑𝑑 = 1
2

(𝜆𝜆 + 𝑛𝑛𝑛𝑛) such that 

ℒ𝑊𝑊(𝑥𝑥) ≤ −𝑐𝑐|𝑥𝑥| + 𝑑𝑑,   ∀ 𝑥𝑥 ∈ ℤ≥0𝑛𝑛 . 
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By [21, Theorem 4.3], the above implies (3) and thus stability.  

For the protected case, by applying infinitesimal generator, we have  

ℒ𝑊𝑊(𝑥𝑥) = 𝑎𝑎�1 − 𝛽𝛽(𝑥𝑥)�𝜆𝜆
1
2
�

1
𝑛𝑛 �

(𝑥𝑥𝑖𝑖 + 1)2 − 𝑥𝑥𝑖𝑖2�
𝑛𝑛

𝑖𝑖=1

+ �1 − 𝑎𝑎�1 − 𝛽𝛽(𝑥𝑥)�� 𝜆𝜆
1
2 �

(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 1)2 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2 �

+ 𝜇𝜇
1
2
�

1
𝑛𝑛
𝕀𝕀𝑥𝑥𝑖𝑖>0�(𝑥𝑥𝑖𝑖 − 1)2 − 𝑥𝑥𝑖𝑖2�

𝑛𝑛

𝑖𝑖=1

. 

Again, we can relax it to: 

ℒ𝑊𝑊(𝑥𝑥) = 𝑎𝑎�1 − 𝛽𝛽(𝑥𝑥)�λ �
|𝑥𝑥|
𝑛𝑛
− 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚�+ (λ𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − μ|𝑥𝑥|) +

1
2

(λ + 𝑛𝑛μ). 

Hence, by (2) there exists a constant 𝑐𝑐 = min
𝑥𝑥
𝜇𝜇 − 𝜆𝜆𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚/|𝑥𝑥| − 𝑎𝑎�1 − 𝛽𝛽(𝑥𝑥)�𝜆𝜆(1/𝑛𝑛 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚/|𝑥𝑥|) > 0 and 

𝑑𝑑 = 1
2

(𝜆𝜆 + 𝑛𝑛𝑛𝑛) such that: 

ℒ𝑊𝑊(𝑥𝑥) ≤ −𝑐𝑐|𝑥𝑥| + 𝑑𝑑,   ∀ 𝑥𝑥 ∈ ℤ≥0𝑛𝑛 . 

By [21, Theorem 4.3], the above implies (3) and thus stability.  

Subsection 3.3 Proof of stability criteria 

Based on the symmetry, without loss of generality, we only need to consider the case when 𝑥𝑥𝑛𝑛 = min
𝑖𝑖
𝑥𝑥𝑖𝑖. 

To demonstrate the existence of the threshold policy, we will show that 𝛽𝛽∗(𝑥𝑥) is monotonically non-
decreasing in 𝑥𝑥𝑖𝑖 (𝑖𝑖 < 𝑛𝑛) when other variables are fixed and monotonically non-increasing in 𝑥𝑥𝑛𝑛  when 
other variables are fixed, that is, 

𝛽𝛽∗(𝑥𝑥 + 𝑒𝑒𝑖𝑖) ≥ 𝛽𝛽∗(𝑥𝑥) (∀𝑖𝑖 < 𝑛𝑛)
𝛽𝛽∗(𝑥𝑥 + 𝑒𝑒𝑛𝑛) ≤ 𝛽𝛽∗(𝑥𝑥).

(4) 

Because of Schur convexity, 𝐽𝐽∗(𝑥𝑥 + 𝑒𝑒𝑖𝑖) ≥ 𝐽𝐽∗(𝑥𝑥 + 𝑒𝑒𝑛𝑛)(∀ 𝑖𝑖 < 𝑛𝑛). We can rewrite (3) as 

𝐽𝐽∗(𝑥𝑥) = min𝑏𝑏∈0,1 �|𝑥𝑥| + 𝑐𝑐𝑏𝑏𝑏𝑏 + 𝜇𝜇�𝐽𝐽∗((𝑥𝑥 − 𝑒𝑒𝑖𝑖)+)
𝑛𝑛

𝑖𝑖=1

+ 𝜆𝜆𝐽𝐽∗(𝑥𝑥 + 𝑒𝑒𝑛𝑛)

+ (1 − 𝑏𝑏)
𝑎𝑎
𝑛𝑛
𝜆𝜆 ��𝐽𝐽∗(𝑥𝑥 + 𝑒𝑒𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

− 𝑛𝑛𝐽𝐽∗(𝑥𝑥 + 𝑒𝑒𝑛𝑛)��. 

Let Δ(𝑥𝑥) = ∑ 𝐽𝐽∗(𝑥𝑥 + 𝑒𝑒𝑖𝑖)𝑛𝑛
𝑖𝑖=1 − 𝑛𝑛𝐽𝐽∗(𝑥𝑥 + 𝑒𝑒𝑛𝑛), then (4) is essentially 
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Δ(𝑥𝑥 + 𝑒𝑒𝑖𝑖) ≥ Δ(𝑥𝑥) (∀𝑖𝑖 < 𝑛𝑛)
Δ(𝑥𝑥 + 𝑒𝑒𝑛𝑛) ≤ Δ(𝑥𝑥).

(5) 

We will use induction based on value iteration to prove (5), that is, let Δ(𝑘𝑘)(𝑥𝑥) = ∑ 𝐽𝐽(𝑘𝑘)(𝑥𝑥 + 𝑒𝑒𝑖𝑖)𝑛𝑛
𝑖𝑖=1 −

𝑛𝑛𝐽𝐽(𝑘𝑘)(𝑥𝑥 + 𝑒𝑒𝑛𝑛), it is sufficient to show 

Δ(𝑘𝑘)(𝑥𝑥 + 𝑒𝑒𝑖𝑖) ≥ Δ(𝑘𝑘)(𝑥𝑥) (∀𝑖𝑖 < 𝑛𝑛)
Δ(𝑘𝑘)(𝑥𝑥 + 𝑒𝑒𝑛𝑛) ≤ Δ(𝑘𝑘)(𝑥𝑥),

(6) 

for all 𝑘𝑘. 

Base step. Initially, with 𝐽𝐽(0) = 0, we have Δ(0) = 0, then (6) holds trivially because it consists of two 
equalities. We can run more iterations, say 𝐽𝐽(1)(𝑥𝑥) = |𝑥𝑥| and 𝐽𝐽(2)(𝑥𝑥) = (1 + λ + 𝑛𝑛μ)|𝑥𝑥| + λ −
μ∑ 𝕀𝕀𝑥𝑥𝑖𝑖>0𝑖𝑖 , until (6) includes some strict inequalities and holds non-trivially. 

Induction step. Based on the induction hypothesis, we have ∀𝑗𝑗 < 𝑛𝑛, 

Δ(𝑘𝑘) ��𝑥𝑥 + 𝑒𝑒𝑗𝑗 − 𝑒𝑒𝑖𝑖�
+� ≥ Δ(𝑘𝑘)((𝑥𝑥 − 𝑒𝑒𝑖𝑖)+) ≥ Δ(𝑘𝑘)((𝑥𝑥 + 𝑒𝑒𝑛𝑛 − 𝑒𝑒𝑖𝑖)+), 

Δ(𝑘𝑘)�𝑥𝑥 + 𝑒𝑒𝑗𝑗 + 𝑒𝑒𝑖𝑖� ≥ Δ(𝑘𝑘)(𝑥𝑥 + 𝑒𝑒𝑖𝑖) ≥ Δ(𝑘𝑘)(𝑥𝑥 + 𝑒𝑒𝑛𝑛 + 𝑒𝑒𝑖𝑖), 

Δ(𝑘𝑘)�𝑥𝑥 + 𝑒𝑒𝑗𝑗 + 𝑒𝑒𝑛𝑛� ≥ Δ(𝑘𝑘)(𝑥𝑥 + 𝑒𝑒𝑛𝑛) ≥ Δ(𝑘𝑘)(𝑥𝑥 + 2𝑒𝑒𝑛𝑛). 

Then according to the value iteration form of (3), we can conclude 

Δ(𝑘𝑘+1)�𝑥𝑥 + 𝑒𝑒𝑗𝑗� ≥ Δ(𝑘𝑘+1)(𝑥𝑥) (∀𝑗𝑗 < 𝑛𝑛) 

Δ(𝑘𝑘+1)(𝑥𝑥) ≤ Δ(𝑘𝑘+1)(𝑥𝑥 + 𝑒𝑒𝑛𝑛). 

Thus, the existence of an optimal threshold policy is established. 

 

Section 4: Secure routing 

Subsection 4.1 Stability results 

For state-dependent attacking and defending strategies, we derive the following property for the 
stability of the n-server system and for any equilibrium:  

Theorem 3. Consider the 𝑛𝑛-queue system subject to attacks. The attacker (resp. defender) follows a 
Markovian strategy α:ℤ≥0𝑛𝑛 → [0,1] (resp. β:ℤ≥0𝑛𝑛 → [0,1]). Then 𝑛𝑛-queue system is stable if there exists a 
compact set 𝜒𝜒0 = [0,𝜃𝜃]𝑛𝑛 such that for any 𝑥𝑥 ∈ 𝜒𝜒0𝑐𝑐, when 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ≠ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 
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𝛼𝛼(𝑥𝑥)�1 − 𝛽𝛽(𝑥𝑥)� <
𝜇𝜇 − 𝜆𝜆𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚/|𝑥𝑥|

𝜆𝜆(𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)/|𝑥𝑥|
, (7) 

where 𝑥𝑥𝑚𝑚𝑎𝑎𝑎𝑎 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖

𝑥𝑥𝑖𝑖. Furthermore, any equilibrium (𝛼𝛼∗,𝛽𝛽∗) must satisfy the above, and the number of 

jobs is upper bounded by 

𝑋𝑋� ≤
𝜆𝜆 + 𝑛𝑛𝑛𝑛

2𝑐𝑐
, (8) 

where 𝑐𝑐 = min
𝑥𝑥
�𝜇𝜇 − 𝜆𝜆𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚/|𝑥𝑥|− 𝛼𝛼(𝑥𝑥)�1 − 𝛽𝛽(𝑥𝑥)�𝜆𝜆(𝑥𝑥𝑚𝑚𝑎𝑎𝑎𝑎 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)/|𝑥𝑥|�. 

Subsection 4.2 Stochastic security game 

Definition 2. The optimal attacking (resp. defending) strategy 𝛼𝛼∗ (resp. 𝛽𝛽∗) satisfies that for each state 
𝑥𝑥 ∈ ℤ≥0𝑛𝑛 , 

α∗(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥α𝑉𝑉𝐴𝐴∗(𝑥𝑥,β∗),  β∗(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛β𝑉𝑉𝐵𝐵∗(𝑥𝑥,α∗). 

The value of the attacker (defender) is  𝑉𝑉𝐴𝐴∗(𝑥𝑥,𝛽𝛽∗) (resp. 𝑉𝑉𝐵𝐵∗(𝑥𝑥,𝛼𝛼∗)). In particular, (𝛼𝛼∗,𝛽𝛽∗) is a Markovian 
perfect equilibrium. 

Proposition 2. The Markovian perfect equilibrium of this two-person non-cooperative stochastic security 
game always exists. 

proof. Note that the state space ℤ≥0𝑛𝑛  is countable and the action space [0,1] is compact.  By [32], the total-
discounted return equilibrium policy exists. 

According to Shapley’s extension on minimax theorem for stochastic game [33],  

𝑉𝑉𝐵𝐵∗(𝑥𝑥,α∗) = 𝑉𝑉𝐴𝐴∗(𝑥𝑥, β∗) = 𝑉𝑉∗(𝑥𝑥). 

Again by using the uniformization trick and assuming ρ + λ + 𝑛𝑛μ = 1 we get 

𝑉𝑉∗(𝑥𝑥) = maxαminβ �|𝑥𝑥| + 𝑐𝑐𝑏𝑏𝛽𝛽(𝑥𝑥) − 𝑐𝑐𝑎𝑎𝛼𝛼(𝑥𝑥) + 𝜇𝜇�𝑉𝑉∗((𝑥𝑥 − 𝑒𝑒𝑖𝑖)+)
𝑖𝑖

+ 𝜆𝜆𝜆𝜆𝜆𝜆𝑛𝑛𝑗𝑗𝑉𝑉∗�𝑥𝑥 + 𝑒𝑒𝑗𝑗�

+ 𝛼𝛼(𝑥𝑥)�1 − 𝛽𝛽(𝑥𝑥)�𝜆𝜆 �𝑚𝑚𝑚𝑚𝑥𝑥𝑗𝑗𝑉𝑉∗�𝑥𝑥 + 𝑒𝑒𝑗𝑗� −𝑚𝑚𝑚𝑚𝑛𝑛𝑗𝑗𝑉𝑉∗�𝑥𝑥 + 𝑒𝑒𝑗𝑗��� .             (9) 

The main theorem of this section is given below. 

Theorem 4. The stochastic security game has the following regimes of Markovian perfect equilibria 
(𝛼𝛼∗,𝛽𝛽∗): 

• Type I: (0,0) (low risk) 
• Type II: (1,0) (medium risk) 
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• Type III: (𝑐𝑐𝑏𝑏/𝛿𝛿∗, 1 − 𝑐𝑐𝑎𝑎/𝛿𝛿∗) (high risk) where 𝛿𝛿∗(𝑥𝑥) = 𝜆𝜆 �𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗

𝑉𝑉∗�𝑥𝑥 + 𝑒𝑒𝑗𝑗� − 𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗
𝑉𝑉∗�𝑥𝑥 + 𝑒𝑒𝑗𝑗�� 

Furthermore, Type I and Type II regimes are characterized by 𝑛𝑛(𝑛𝑛 − 1)  non-intersecting symmetric 
monotonically non-decreasing threshold functions; Type II and Type III regimes are characterized by other 
𝑛𝑛(𝑛𝑛 − 1) non-intersecting symmetric monotonically non-decreasing threshold functions (see Figure 4 and 
Figure 5). 

 

Figure 4: The Equilibria Regimes of the Stochastic Security Game for a Two-queue System. 

     

Figure 5: The Optimal Attacking and Defending Strategies for a Two-queue System. 

Subsection 4.3 Proof of stability of results 

Consider the quadratic Lyapunov function  

𝑊𝑊(𝑥𝑥) =
1
2
�𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

. 

By applying infinitesimal generator, we have  
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ℒ𝑊𝑊(𝑥𝑥) = 𝛼𝛼(𝑥𝑥)�1 − 𝛽𝛽(𝑥𝑥)�𝜆𝜆
1
2
�

1
𝑛𝑛 �

(𝑥𝑥𝑖𝑖 + 1)2 − 𝑥𝑥𝑖𝑖2�
𝑛𝑛

𝑖𝑖=1

+ �1 − 𝛼𝛼(𝑥𝑥)�1 − 𝛽𝛽(𝑥𝑥)�� 𝜆𝜆
1
2 �

(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 1)2 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2 � + 𝜇𝜇

1
2
�

1
𝑛𝑛
𝕀𝕀𝑥𝑥𝑖𝑖>0�(𝑥𝑥𝑖𝑖 − 1)2 − 𝑥𝑥𝑖𝑖2�

𝑛𝑛

𝑖𝑖=1

. 

Again we can relax it to 

ℒ𝑊𝑊(𝑥𝑥) = 𝛼𝛼(𝑥𝑥)�1 − 𝛽𝛽(𝑥𝑥)�λ �
|𝑥𝑥|
𝑛𝑛
− 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚�+ (λ𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − μ|𝑥𝑥|) +

1
2

(λ + 𝑛𝑛μ). 

Hence, by (2) there exists a constant 𝑐𝑐 = min
𝑥𝑥
𝜇𝜇 − 𝜆𝜆𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚/|𝑥𝑥| − 𝑎𝑎�1 − 𝛽𝛽(𝑥𝑥)�𝜆𝜆(1/𝑛𝑛 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚/|𝑥𝑥|) > 0 and 

𝑑𝑑 = 1
2

(𝜆𝜆 + 𝑛𝑛𝑛𝑛) such that 

ℒ𝑊𝑊(𝑥𝑥) ≤ −𝑐𝑐|𝑥𝑥| + 𝑑𝑑,   ∀ 𝑥𝑥 ∈ ℤ≥0𝑛𝑛 . 

By [21, Theorem 4.3], the above implies (8) and thus stability.  

 

Subsection 4.4 Proof of Theorem 4 

Based on the symmetry, without loss of generality, we only need to consider the case when 𝑥𝑥1 =
max
𝑖𝑖
𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑛𝑛 = min

𝑖𝑖
𝑥𝑥𝑖𝑖. Because of Schur convexity, 𝑉𝑉(𝑥𝑥 + 𝑒𝑒1) = max

𝑗𝑗
𝑉𝑉�𝑥𝑥 + 𝑒𝑒𝑗𝑗�, 𝑉𝑉(𝑥𝑥 + 𝑒𝑒𝑛𝑛) = min

𝑗𝑗
𝑉𝑉�𝑥𝑥 +

𝑒𝑒𝑗𝑗�. We can rewrite (9) as 

𝑉𝑉∗(𝑥𝑥) = max
α

min
β
�|𝑥𝑥| + 𝑐𝑐𝑏𝑏𝛽𝛽(𝑥𝑥) − 𝑐𝑐𝑎𝑎𝛼𝛼(𝑥𝑥) + 𝜇𝜇�𝑉𝑉∗((𝑥𝑥 − 𝑒𝑒𝑖𝑖)+)

𝑖𝑖

+ 𝜆𝜆𝑉𝑉∗(𝑥𝑥 + 𝑒𝑒𝑛𝑛)

+ 𝛼𝛼(𝑥𝑥)�1 − 𝛽𝛽(𝑥𝑥)�𝜆𝜆�𝑉𝑉∗(𝑥𝑥 + 𝑒𝑒1)− 𝑉𝑉∗(𝑥𝑥 + 𝑒𝑒𝑛𝑛)�� .                      (10) 

Let 𝒟𝒟(𝑥𝑥) = 𝑉𝑉∗(𝑥𝑥 + 𝑒𝑒1) − 𝑉𝑉∗(𝑥𝑥 + 𝑒𝑒𝑛𝑛). To demonstrate the existence of threshold functions, we will show 
that the type of the equilibrium is monotonically non-decreasing in 𝑥𝑥1 when other variables are fixed and 
monotonically non-increasing in 𝑥𝑥𝑛𝑛 when other variables are fixed, that is, 

𝒟𝒟(𝑥𝑥 + 𝑒𝑒1) ≥ 𝒟𝒟(𝑥𝑥),  𝒟𝒟(𝑥𝑥 + 𝑒𝑒𝑛𝑛) ≤ 𝒟𝒟(𝑥𝑥). 

We will use induction based on value iteration to prove, that is, let 𝒟𝒟(𝑘𝑘)(𝑥𝑥) = 𝑉𝑉(𝑘𝑘)(𝑥𝑥 + 𝑒𝑒1)−
𝑉𝑉(𝑘𝑘)(𝑥𝑥 + 𝑒𝑒𝑛𝑛), it is sufficient to show 

𝒟𝒟(𝑘𝑘)(𝑥𝑥 + 𝑒𝑒1) ≥ 𝒟𝒟(𝑘𝑘)(𝑥𝑥), 𝒟𝒟(𝑘𝑘)(𝑥𝑥 + 𝑒𝑒𝑛𝑛) ≤ 𝒟𝒟(𝑘𝑘)(𝑥𝑥).  
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Base step. Similar to the base step in the proof of Theorem 2.  

Induction step. Based on the induction hypothesis, we have  

𝒟𝒟(𝑘𝑘)((𝑥𝑥 + 𝑒𝑒1 − 𝑒𝑒𝑛𝑛)+) ≥ 𝒟𝒟(𝑘𝑘)((𝑥𝑥 − 𝑒𝑒𝑛𝑛)+) ≥ 𝒟𝒟(𝑘𝑘)(𝑥𝑥) ≥ 𝒟𝒟(𝑘𝑘)((𝑥𝑥 − 𝑒𝑒1)+), 

𝒟𝒟(𝑘𝑘)(𝑥𝑥 + 2𝑒𝑒1) ≥ 𝒟𝒟(𝑘𝑘)(𝑥𝑥 + 𝑒𝑒1) ≥ 𝒟𝒟(𝑘𝑘)(𝑥𝑥 + 𝑒𝑒1 + 𝑒𝑒𝑛𝑛) ≥ 𝒟𝒟(𝑘𝑘)(𝑥𝑥 + 𝑒𝑒𝑛𝑛). 

Then according to the value iteration form of (10), we can conclude 𝒟𝒟(𝑘𝑘+1)(𝑥𝑥 + 𝑒𝑒1) ≥ 𝒟𝒟(𝑘𝑘+1)(𝑥𝑥) and 

prove 𝒟𝒟(𝑘𝑘+1)(𝑥𝑥) ≤ 𝒟𝒟(𝑘𝑘+1)(𝑥𝑥 + 𝑒𝑒𝑛𝑛) in a similar way. 

Thus the existence of the threshold functions is established.  

 

Section 5: Strategic secure routing 

Subsection 5.1: Modeling and formulation 

Consider an open acyclic Jackson network with a set of nodes 𝒩𝒩 and a set of links ℰ; see Figure 6 for an 
example. 

 

Figure 6: A Multi-class Network. 

Each job is assigned an origin-destination (OD) pair (𝑜𝑜𝑐𝑐 ,𝑑𝑑𝑐𝑐), where 𝑜𝑜𝑐𝑐 is the index of the origin, 𝑑𝑑𝑐𝑐 is the 
index of the destination, and 𝑐𝑐 is the class of the job. We assume that a job's class only determines its 
OD pair but does not affect the service time. Let 𝒞𝒞 be the set of classes. Class-c jobs arrive at node 𝑜𝑜𝑐𝑐 
according to a Poisson process of rate 𝜆𝜆𝑐𝑐  . Let 𝒩𝒩𝑐𝑐 be the set of nodes from which node 𝑑𝑑𝑐𝑐 is accessible. 
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Each link contains a server indexed by ⟨𝑖𝑖, 𝑗𝑗⟩, where 𝑖𝑖 (resp. 𝑗𝑗) is the node upstream (resp. downstream) 
to the server. We assume Bernoulli routing; i.e., at each node 𝑖𝑖, a class-𝑐𝑐 job is routed to a downstream 
server ⟨𝑖𝑖, 𝑗𝑗⟩ with probability 𝑝𝑝𝑖𝑖𝑖𝑖𝑐𝑐 . Equivalently, we can describe the routing using the average flow 𝑥𝑥𝑖𝑖𝑗𝑗𝑐𝑐 , 

which should satisfy the following constraints: 

∑ 𝑏𝑏𝑖𝑖𝑖𝑖𝑐𝑐 + 𝕀𝕀𝑖𝑖=𝑜𝑜𝑐𝑐𝜆𝜆𝑐𝑐𝑗𝑗:⟨𝑗𝑗,𝑖𝑖⟩∈ℰ =  ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐𝑘𝑘:⟨𝑖𝑖,𝑘𝑘⟩∈ℰ    ,    𝑖𝑖 ∈ 𝒩𝒩, 𝑐𝑐 ∈ 𝒞𝒞,  (1a) 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐∈𝒞𝒞 < 𝜇𝜇𝑗𝑗 , ⟨𝑖𝑖, 𝑗𝑗⟩ ∈ ℰ,  (1b) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐 ≥ 0, ⟨𝑖𝑖, 𝑗𝑗⟩ ∈ ℰ, 𝑐𝑐 ∈ 𝒞𝒞.  (1c) 

Thus, one can obtain the routing probabilities by  

𝑝𝑝𝑖𝑖𝑖𝑖𝑐𝑐 =
𝑥𝑥𝑖𝑖𝑖𝑖
𝑐𝑐

∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑐𝑐

𝑗𝑗:⟨𝑖𝑖,𝑘𝑘⟩∈ℰ 
, 𝑐𝑐 ∈ 𝒞𝒞, ⟨𝑖𝑖, 𝑗𝑗⟩ ∈ ℰ.  (2) 

Let 𝒳𝒳 be the set of x satisfying the above constraints. The network is stabilizable if 𝒳𝒳 ≠ ∅. By standard 
results from queuing theory [1], the queuing cost is given by 

𝑞𝑞(𝑥𝑥) = �
�

∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐∈𝒞𝒞

𝜇𝜇𝑖𝑖𝑖𝑖 − ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐∈𝒞𝒞𝑗𝑗:⟨𝑖𝑖,𝑘𝑘⟩∈ℰ 

𝑥𝑥 ∈ 𝒳𝒳

∞ otherwise.

 

Next, we specify how the attacker and the SO jointly influence the flow 𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐  and thus the queuing cost 

𝑞𝑞(𝑥𝑥). 

An external adversary (attacker) can create phantom demand into the system. Phantom demand spoofs 
the SO's knowledge about the traffic demands but does not affect the service of actual jobs. That is, for 
each class 𝑐𝑐 ∈ 𝒞𝒞, the attacker can create class-c phantom jobs at rate 𝑎𝑎𝑐𝑐 ≥ 0 via node 𝑜𝑜𝑐𝑐. Hence, the 

attacker's action is fully characterized by vector 𝑎𝑎 ∈ ℝ≥0
|𝒞𝒞|. The attacker's action is constrained by its 

budget ‖𝑎𝑎‖1 ≤ 𝑎𝑎�. 

The SO's action is to select the Bernoulli routing probabilities at each node based on the demand 

pattern. This is equivalent to specify the vector 𝑏𝑏 = �𝑏𝑏𝑖𝑖𝑖𝑖𝑐𝑐 �𝑐𝑐∈𝒞𝒞,⟨𝑖𝑖,𝑗𝑗⟩∈ℰ
, where 𝑏𝑏𝑖𝑖𝑖𝑖𝑐𝑐  is the class-c flow through 

link (server) ⟨𝑖𝑖, 𝑗𝑗⟩. We assume that the SO cannot distinguish between actual and phantom jobs. Thus, 
the SO only sees a demand of 

𝜆𝜆𝑐𝑐� = 𝜆𝜆𝑐𝑐 + 𝑎𝑎𝑐𝑐 
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at node 𝑜𝑜𝑐𝑐 for 𝑐𝑐 ∈ 𝒞𝒞 and selects the routing probabilities accordingly. Hence, the SO's action 𝑏𝑏 ∈

ℝ≥0
|ℰ|×|𝒞𝒞| satisfies 

∑ 𝑏𝑏𝑖𝑖𝑖𝑖𝑐𝑐 + 𝕀𝕀𝑖𝑖=𝑜𝑜𝑐𝑐𝜆𝜆𝑐𝑐 + 𝕀𝕀𝑖𝑖=𝑜𝑜𝑐𝑐𝑎𝑎𝑐𝑐𝑗𝑗:⟨𝑗𝑗,𝑖𝑖⟩∈ℰ = ∑ 𝑏𝑏𝑖𝑖𝑖𝑖𝑐𝑐𝑘𝑘:⟨𝑖𝑖,𝑘𝑘⟩∈ℰ , 𝑖𝑖 ∈ 𝒩𝒩, 𝑐𝑐 ∈ 𝒞𝒞,   (3a) 

∑ 𝑏𝑏𝑖𝑖𝑖𝑖𝑐𝑐∈𝒞𝒞 < 𝜇𝜇𝑗𝑗, ⟨𝑖𝑖, 𝑗𝑗⟩ ∈ ℰ,  (3b) 

𝑏𝑏𝑖𝑖𝑖𝑖𝑐𝑐 ≥ 0, ⟨𝑖𝑖, 𝑗𝑗⟩ ∈ ℰ, 𝑐𝑐 ∈ 𝒞𝒞.  (3c) 

Then, the routing probabilities are given by 

𝑝𝑝𝑖𝑖𝑖𝑖𝑐𝑐 =
𝑏𝑏𝑖𝑖𝑖𝑖
𝑐𝑐

∑ 𝑏𝑏𝑖𝑖𝑖𝑖
𝑐𝑐

𝑗𝑗:⟨𝑖𝑖,𝑘𝑘⟩∈ℰ 
, 𝑐𝑐 ∈ 𝒞𝒞, ⟨𝑖𝑖, 𝑗𝑗⟩ ∈ ℰ.  (4) 

Note that the SO's action b is in general not equal to the average flow 𝑥𝑥 defined in Section 1.1. To 
differentiate, we call 𝑥𝑥 the actual flow and call 𝑏𝑏 the observed flow. By (1)-(4), the actual and observed 
flows are related by 

𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐 (𝑎𝑎, 𝑏𝑏) = 𝜆𝜆𝑐𝑐 
𝜆𝜆𝑐𝑐+𝑎𝑎𝑐𝑐

𝑏𝑏𝑖𝑖𝑖𝑖𝑐𝑐 , ⟨𝑖𝑖, 𝑗𝑗⟩ ∈ ℰ, 𝑐𝑐 ∈ 𝒞𝒞.  (5) 

Consequently, the queuing cost q also depends on the attacker's and the SO's actions as well as the 
demand vector 𝜆𝜆. Hence, we use the notation 𝑞𝑞(𝑎𝑎, 𝑏𝑏|𝜆𝜆) to emphasize such dependency. 

We model the interaction between the attacker and the SO as a non-zero-sum sequential game, where 
the attacker moves first. 

Stage I: Attacker moves. The attacker assumes that the SO would fully trust the observed 

demand 𝜆̂𝜆 = 𝜆𝜆 + 𝑎𝑎 and optimize the routing accordingly. That is, the attacker assumes that the SO 
would determine the flows 𝑏𝑏 by solving the following optimization problem: 

min
𝑏𝑏∈𝒳𝒳(𝜆𝜆+𝑎𝑎)

𝑞𝑞(0, 𝑏𝑏|𝜆𝜆 + 𝑎𝑎).  (6) 

In other words, the attacker believes that the SO is “naïve”. Let ℬ∗ be the set of optimal solutions to the 
above problem. The attacker's objective is to maximize the queuing cost conditional on the above 
assumptions. That is, the attacker determines its action a by solving 

max
𝑎𝑎:‖𝑎𝑎‖1≤𝑎𝑎�

min
𝑏𝑏∈ℬ∗

𝑞𝑞(𝑎𝑎, 𝑏𝑏|𝜆𝜆). 

The attacker's move ends here. We assume that the attacker is unaware of any diagnosis or secure 
routing actions for the SO. 
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Stage II: SO moves. The SO first diagnoses the demand data and then route the traffic 
accordingly. We assume the following for the SO. 

1.  The SO knows the attacker's budget 𝑎𝑎�. 
2.  The SO knows that the attacker believes the SO's naivety in the sense of (6). 
3.  The SO knows the attacker's objective specified by (7). 

Based on the above assumptions, the SO applies some diagnosis tool to the observed demand 𝜆̂𝜆 and 

obtains a set of possible true values ℒ(𝜆̂𝜆) for the actual demand 𝜆𝜆. Then, the SO optimizes the worst-
case queuing cost as follows. 

min
𝑏𝑏∈�∩𝜈𝜈∈ℒ�𝜆𝜆��𝒳𝒳(𝜈𝜈)�

max
𝜈𝜈∈ℒ�𝜆𝜆��

𝑞𝑞(0, 𝑏𝑏|𝜈𝜈). 

That is, the SO's final action 𝑏𝑏 must stabilize the network for all possible values for the demand. If 

�∩𝜈𝜈∈ℒ�𝜆𝜆��  𝒳𝒳(𝜈𝜈)� ≠ ∅, the network is said to be securely stabilizable, which means that the SO can 

guarantee network stability regardless of the attacker's action. If �∩𝜈𝜈∈ℒ�𝜆𝜆�� 𝒳𝒳(𝜈𝜈)�, the network is said to 

be not securely stabilizable, which means that the SO does not know whether stability is guaranteed or 
not. 

Remark 1 “Not securely stabilizable” is in general not equivalent to “unstabilizable”. Note that a 
network's stabilizability depends on the actual demand pattern. If the SO does not know actual demand 
pattern exactly, then the SO may not know the network's stabilizability. 
 

Subsection 5.2: Attacker’s move 

In this section, we study the attacker's action and analyze a network's security risk in the absence of 
diagnosis and secure routing. 

Specifically, we study the following two questions. 

1. Stability: when can the attacker make the network appear to be unstabilizable to the SO? 

2. Optimality: if the network must appear to be stabilizable to the SO, how will the attacker optimize 
its action? 

In general, the more budget the attacker has, the more likely that the network will appear to be 
unstabilizable to the SO. We can quantify the ``stabilizability'' via a threshold \bar a^* such that the 
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attacker can make the network appear to be unstabilizable if and only if \bar a\ge \bar a^*. A formal 
definition of \bar a^* is as follows. 

The destabilizing budget 𝑎𝑎�∗ of a network with demand 𝜆𝜆 is given by 

  𝑎𝑎�∗ = max
𝑥𝑥

∑ 𝑎𝑎𝑐𝑐𝑐𝑐  

s.t.  ∑ 𝑏𝑏𝑖𝑖𝑖𝑖𝑐𝑐 + ∑ 𝐼𝐼𝑖𝑖=𝑜𝑜𝑐𝑐𝑐𝑐∈𝐶𝐶 (𝜆𝜆𝑐𝑐 + 𝑎𝑎𝑐𝑐){𝑗𝑗:<𝑗𝑗,𝑖𝑖>∈𝐸𝐸} = ∑ 𝑏𝑏𝑖𝑖𝑖𝑖𝑐𝑐𝑘𝑘:<𝑖𝑖,𝑘𝑘>∈𝐸𝐸 , 𝑖𝑖 ∈ 𝑁𝑁, 𝑐𝑐 ∈ 𝐶𝐶 

∑ 𝑏𝑏𝑖𝑖𝑖𝑖𝑐𝑐{𝑐𝑐∈𝐶𝐶} ≤ 𝜇𝜇𝑖𝑖𝑖𝑖  , < 𝑖𝑖, 𝑗𝑗 >∈ 𝐸𝐸, 

     𝑏𝑏𝑖𝑖𝑖𝑖𝑐𝑐 ≥ 0, 

< 𝑖𝑖, 𝑗𝑗 >∈ 𝐸𝐸, 𝑐𝑐 ∈ 𝐶𝐶. 

In the above optimization, the parameters are 𝜆𝜆𝑐𝑐 and 𝜇𝜇𝑖𝑖𝑖𝑖, and the decision variable 𝑏𝑏𝑖𝑖𝑖𝑖𝑐𝑐  and 𝑎𝑎𝑐𝑐. Since 0 ≤
 𝑏𝑏𝑖𝑖𝑖𝑖𝑐𝑐 ≤ 𝜇𝜇𝑖𝑖𝑖𝑖  and 𝜆𝜆𝑐𝑐 > 0, it is apparent that 𝑎𝑎𝑐𝑐 are bounded. Hence, the above linear programming must 

have an optimal solution, and 𝑎𝑎�∗ must exist. The use of 𝑎𝑎�∗ is to determine whether the attacker's 
decision-making problem has an optimal solution: if 𝑎𝑎 ≥ 𝑎𝑎�∗, then there exists an action for the attacker 
such that the queuing cost is infinite, and thus the naïve SO’s decision making has no optimal solution. 

Since 𝛼𝛼∗ is given by a linear programming, it can be efficiently computed by the simplex method. 
Furthermore, we can derive ``closed-form'' (i.e. not requiring solving LPs) bounds thereon. For each class 
𝑐𝑐, we can identify a set of routes 𝑅𝑅𝑐𝑐 that start from 𝑜𝑜𝑐𝑐 and ends at 𝑑𝑑𝑐𝑐. We use 𝑖𝑖 ∈ 𝑟𝑟 to denote that node 
𝑖𝑖 is on route 𝑟𝑟. For each class 𝑐𝑐, we can also identify a set of cuts 𝐾𝐾𝑐𝑐 that separates the origin 𝑜𝑜𝑐𝑐 and the 
destination 𝑑𝑑𝑐𝑐. Then, we can compute an upper bound on the throughput score as follows: 

Proposition Consider an acyclic Jackson network < 𝑁𝑁,𝐸𝐸 > with actual demand 𝛽𝛽 and service rate 𝜇𝜇. 
Then, the network's resiliency score 𝛼𝛼∗ is bounded by 

min
<𝑖𝑖,𝑗𝑗>∈𝐸𝐸

 �𝜇𝜇𝑖𝑖𝑖𝑖 −�
|{𝑟𝑟 ∈ 𝑅𝑅𝑐𝑐: < 𝑖𝑖, 𝑗𝑗 >∈ 𝑟𝑟|

|𝑅𝑅𝑐𝑐|
𝑐𝑐∈𝐶𝐶

𝜆𝜆𝑐𝑐�
+

≤ 𝛼𝛼∗ ≤ min
𝑐𝑐

min
𝐾𝐾

� � 𝜇𝜇𝑖𝑖𝑖𝑖 − 𝜆𝜆𝑐𝑐
<𝑖𝑖,𝑗𝑗>∈𝐾𝐾

� . 

where (. )+ denotes the positive part of a number and |. | denotes the cardinality of a set. 

Proof. 

To obtain the lower bound, consider the action 𝑏𝑏 for the SO: 

𝑏𝑏𝑖𝑖𝑖𝑖𝑐𝑐 =
|{𝑟𝑟 ∈ 𝑅𝑅𝑐𝑐: < 𝑖𝑖, 𝑗𝑗 >∈ 𝑟𝑟}|

|𝑅𝑅𝑐𝑐| (𝜆𝜆𝑐𝑐 + 𝑎𝑎𝑐𝑐), < 𝑖𝑖, 𝑗𝑗 >∈ 𝐸𝐸. 
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That is, the SO attempts to distribute class-c traffic evenly over the routes 𝑅𝑅𝑐𝑐 available to this class. 
Then, if the capacity constraints were dropped, the actual flow can be obtained from 

𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐 (𝑎𝑎, 𝑏𝑏) =
|𝑟𝑟 ∈ 𝑅𝑅𝑐𝑐: < 𝑖𝑖, 𝑗𝑗 >∈ 𝑟𝑟|

|𝑅𝑅𝑐𝑐|
𝜆𝜆𝑐𝑐 . 

Hence, the total flow through link < 𝑖𝑖, 𝑗𝑗 > is 

𝑥𝑥𝑖𝑖𝑖𝑖 = �
|{𝑟𝑟 ∈ 𝑅𝑅𝑐𝑐: < 𝑖𝑖, 𝑗𝑗 >∈ 𝑟𝑟}|

|𝑅𝑅𝑐𝑐|
𝜆𝜆𝑐𝑐.

𝑐𝑐

 

Hence, if 𝛼𝛼 < 𝜇𝜇𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖  for each < 𝑖𝑖, 𝑗𝑗 >∈ 𝐸𝐸, the attacker cannot destabilize the network; this leads to 

the lower bound. 

The upper bound essentially results from the classical max-flow-min-cut theorem. For any class 𝑐𝑐 with 
origin 𝑜𝑜𝑐𝑐 and destination 𝑑𝑑𝑐𝑐, the min-cut capacity is given by 

𝐾𝐾min𝑐𝑐 = min
𝐾𝐾∈𝐾𝐾𝑐𝑐

� 𝜇𝜇𝑖𝑖𝑖𝑖 .
<𝑖𝑖,𝑗𝑗>∈𝐾𝐾

 

Hence, if 𝑎𝑎� + 𝜆𝜆𝑐𝑐 ≥ 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐 , the attacker can let 𝑎𝑎𝑐𝑐 = 𝑎𝑎�and mislead the SO to believe that the network 

cannot accommodate the class-c demand. The above arguments maintain true if the influence of other 
classes is also considered. (QED) 

The example below illustrates the above results. Consider the Wheatstone-bridge network in the figure 
below. Suppose that all servers have a service rate of 1 and that 𝜆𝜆1 = 𝜆𝜆2. The total demand is|𝜆𝜆|1 =
𝜆𝜆1 + 𝜆𝜆2, i.e. the 1-norm of the vector 𝜆𝜆. The figure shows how the bounds and the exact resiliency score 
varies as the total demand increases. 

 

Figure 7: Explicit Bounds and Exact Value for Destabilizing Budget of Wheatstone-bridge 
Network. 
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One can check that the network is stabilizable if and only if |𝜆𝜆|1 < 3. (Note that we force 𝜆𝜆1 = 𝜆𝜆2 =
|𝜆𝜆|1/2) Hence, the throughput score vanishes as |𝜆𝜆|1 approaches 0. In this particular example, since the 
demands at the two origins are set equal, the throughput score happens to be linear in the total 
demand. Such linearity is not guaranteed in general. 

Remark. The bounds are tight for single-class networks with homogeneous parallel servers. 

There are two incentives for attacking resource allocation, which constitute the cost function. 

One is to mislead the SO to route more resources to the sideways (rather than the shared path). This is 
realized because the queueing cost grows rapidly as more flow are allocated to it. As the observed 
inflow increases, the SO tend to route more to the sideways. Consider an extreme case for digestion 
where the system is close its limit. The SO will approximately route 1/3 to the central path and the 2/3 
to the sideways, while SO tend to route a larger proportion to the central path when the observed in 
flow is small. We conjecture that the optimal strategy of this attacking incentive is to allocate resources 
equally to two nodes.  

The other attacking incentive is to distort the sharing on the shared path. If one side presents more 
observed inflow, that side tend to share a larger portion on the shared path (i.e., the other side will 
route more to the sideway). Intuitively, the optimal strategy is to allocate all the resources to a single 
node. 

As a result, the convexity of the objective function is inconclusive. When  𝑎𝑎� is relatively large (comparing 
to 𝜆𝜆), the first incentive is more influential, while the second is dominating otherwise. The figure below 
generated by simulation illustrates the idea. 

The first set of figures are examples where the first incentive is more influential. The parameters 
adopted in this simulation is 𝜇𝜇 = 1,𝑎𝑎� = 1,𝜆𝜆2 = 0.2. The real flow of the first node 𝜆𝜆1 are 0.1, 0.15, 0.2, 
respectively from left to right. It can be seen that the cost function presents no convexity. There is no 
clear conclusion which node should be attacked in this case. 
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Figure 8a: How the Cost Varies with the Attacker’s Action (𝝁𝝁 = 𝟏𝟏,𝒂𝒂� = 𝟏𝟏,𝝀𝝀𝟏𝟏 = 𝟎𝟎.𝟏𝟏,𝝀𝝀𝟐𝟐 = 𝟎𝟎.𝟐𝟐). 

 

Figure 8b: How the Cost Varies with the Attacker’s Action (𝝁𝝁 = 𝟏𝟏,𝒂𝒂� = 𝟏𝟏,𝝀𝝀𝟏𝟏 = 𝟎𝟎.𝟏𝟏𝟏𝟏,𝝀𝝀𝟐𝟐 =
𝟎𝟎.𝟐𝟐). 



 

` Securing Intelligent Transportation Systems against Spoofing Attacks  22 

 

Figure 8c: How the Cost Varies with the Attacker’s Action (𝝁𝝁 = 𝟏𝟏,𝒂𝒂� = 𝟏𝟏,𝝀𝝀𝟏𝟏 = 𝟎𝟎.𝟐𝟐,𝝀𝝀𝟐𝟐 = 𝟎𝟎.𝟐𝟐). 

The second set of figures are examples where the second incentive began to gain impact. The 
parameters adopted in this simulation is 𝜇𝜇 = 1,𝑎𝑎� = 1, 𝜆𝜆2 = 0.5. The real flow of the first node 𝜆𝜆1 are 
0.3, 0.4, 0.5, respectively from left to right. It can be seen that the cost function is quasi-convex, though 
not convex. The optimal attacking strategy is thus to allocate all resources to a single node (the less 
node). 

 

Figure 9a: How the Cost Varies with the Attacker’s Action (𝝁𝝁 = 𝟏𝟏,𝒂𝒂� = 𝟏𝟏,𝝀𝝀𝟏𝟏 = 𝟎𝟎.𝟑𝟑,𝝀𝝀𝟐𝟐 = 𝟎𝟎.𝟓𝟓). 
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Figure 9b: How the Cost Varies with the Attacker’s Action (𝝁𝝁 = 𝟏𝟏,𝒂𝒂� = 𝟏𝟏,𝝀𝝀𝟏𝟏 = 𝟎𝟎.𝟒𝟒,𝝀𝝀𝟐𝟐 = 𝟎𝟎.𝟓𝟓). 

 

Figure 9c: How the Cost Varies with the Attacker’s Action (𝝁𝝁 = 𝟏𝟏,𝒂𝒂� = 𝟏𝟏,𝝀𝝀𝟏𝟏 = 𝟎𝟎.𝟓𝟓,𝝀𝝀𝟐𝟐 = 𝟎𝟎.𝟓𝟓). 

Finally, when 𝑎𝑎� is small relative to 𝜆𝜆, the seocnd impact is dominating. The parameters adopted in this 
simulation is 𝜇𝜇 = 1,𝑎𝑎� = 0.2, 𝜆𝜆2 = 0.5. The real flow of the first node 𝜆𝜆1 are 0.3, 0.4, 0.5, respectively 
from left to right. It can be seen that the cost function is convex. The optimal attacking strategy is still to 
allocate all resources to a single node (the less node). 
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Figure 10a: How the Cost Varies with the Attacker’s Action (𝝁𝝁 = 𝟏𝟏,𝒂𝒂� = 𝟎𝟎.𝟐𝟐,𝝀𝝀𝟏𝟏 = 𝟎𝟎.𝟑𝟑,𝝀𝝀𝟐𝟐 =
𝟎𝟎.𝟓𝟓). 

 

Figure 10b: How the Cost Varies with the Attacker’s Action (𝝁𝝁 = 𝟏𝟏,𝒂𝒂� = 𝟎𝟎.𝟐𝟐,𝝀𝝀𝟏𝟏 = 𝟎𝟎.𝟒𝟒,𝝀𝝀𝟐𝟐 =
𝟎𝟎.𝟓𝟓). 
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Figure 10c: How the Cost Varies with the Attacker’s Action (𝝁𝝁 = 𝟏𝟏,𝒂𝒂� = 𝟎𝟎.𝟐𝟐,𝝀𝝀𝟏𝟏 = 𝟎𝟎.𝟓𝟓,𝝀𝝀𝟐𝟐 =
𝟎𝟎.𝟓𝟓). 

 

 

Section 6: Conclusions 

In this project, we studied the theory of diagnosis and secure routing for transportation networks 
subject to a rather broad class of random or strategic disruptions. We use queuing networks to model 
the behavior of transportation systems. We model reliability and security failures as misleading 
information and/or inappropriate decisions. Occurrence of reliability failures is modeled as switches of 
the state observation mapping or actuation policy, which are driven by finite-state Markov chains. 
Security failures are modeled as games between an attacker and a defender, both being strategic. For 
open-loop attacking and defending strategies, we quantitatively characterize the security risk (in terms 
of attack-induced queuing delay and technological cost for defense) in various scenarios. We show that 
the game has multiple regimes for equilibria dependent on the technological costs of attacking and of 
defending as well as the demand. A key finding is that the attacker would either attack no jobs or attack 
all jobs. When the attacking cost is high, the attacker may have no incentive to attack any jobs; 
consequently, the defender does not need to defend any jobs. When the attacking cost is low, the 
attacker will attack every job; in this case, the defender's behavior will depend on the defending cost. 
The regimes also depend on the arrival rate of jobs: for higher arrival rates, the attacker has a higher 
incentive to attack, and the defender has a higher incentive to defend. For closed-loop strategies, we 
again use the Lyapunov function-based approach to derive an upper bound for the queuing cost 
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resulting from the attacker-defender game. In particular, we show that the defender has a higher 
incentive to defend if the difference between the longest and the shortest queues is larger. We also 
develop an algorithm that computes the equilibria of the game and quantifies the security risk. Finally, 
we studied the impact of malicious modification of network boundary condition. We presented 
preliminary results on the structure of attacker and defender actions as well as security risk estimation. 
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